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1 Introduction 

Visualizing terrain is an important part of many fields, such as the film and gaming industries. 
One method of generating terrain is fractal landscapes; it has been used since the eighties in 
films and has continued to rise in popularity in the games industry as well. Often in films and 
some games the terrain generation is pre-computed rather than real-time, and while this 
tends to produce terrain of higher quality, performance and storage space are sacrificed. 
The alternative to this is to generate terrain in real-time or procedurally as the user moves 
around the world. 
 
Terrain is defined as a stretch of land, in particular the surface features of that stretch. This 
includes a number of things; such as how mountainous or smooth the terrain is, the kind of 
foliage that grows in the areas, as well ground the ground covering be it grass, rock, or sand. 
Even weather can affect how we view a terrain, obscuring it fog or covering it with snow.  
 
As the generation of terrain covers a vast number of components, this project will mostly 
focus on the generation of the topology itself with a simple simulation allowing the user to fly 
over the landscape. This report summarizes fractal landscapes, the technologies and 
algorithms associated with them, and the design and development of the project itself. 
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2 Aim and Objectives 

The aim of this project is to design and implement a piece of software that 
will generate a complex fractal landscape in real-time and incorporate a 

simple simulation of a plane flying over the landscape. 

This aim will be considered achieved when the following objectives have been completed: 
1. Generate 3D terrain in real-time using fractal algorithms.  
2. Create a simple user controlled simulation of a flying plane to navigate the 

landscape. 
3. Enable the user to have basic control over the generation of the landscape. 
4. Create an easy to use user interface to provide the user with performance analysis, 

and control over the landscape. 
5. The generated terrain should include additional details, such as trees and lakes. 

Objective 1 – Generate 3D Terrain in Real-Time 

Sub Objective 1.1 Realism 
The generated terrain should be convincing enough that it could exist somewhere in the 
world. This should be achieved by comparing the output of multiple different fractal 
algorithms. 

Sub Objective 1.2 Real-Time 
In order to complete this objective, the terrain should run in real-time, which shall be 
considered as 30 frames per second of higher. 

Sub Objective 1.3 Textured  

The terrain must also be textured appropriately through the use of shaders, preferably using 
generated textures so no images have to be stored. 

Sub Objective 1.4 Infinite  

The terrain must generate infinitely as the player moves around, or at the very least large 
enough that the player would struggle to find the edge. 

Objective 2 – Simple Simulation of Flying Plane 

Sub Objective 2.1 Plane Model  
The user should start in a model of a plane, loaded from a model file and render using 
standard methods. 

Sub Objective 2.2 User Controls  
The plane should be controlled through simple, intuitive controls to allow the user to alter the 
direction and altitude of the plane. 

Sub Objective 2.3 Camera 
The camera should be locked in position in a third person perspective of the plane, making 
sure that enough of the terrain is visible around the plane. Other camera options should also 
be available for debugging and testing purposes. 

Objective 3 – User Control of Terrain 

In order to complete this objective, the application should enable the user to have some 
control over the generation of the terrain, this should include but is not limited to the ability to 
select how mountainous or flat the terrain is, a way of completely regenerating the terrain 
without restarting the application, and a method of saving and loading previously generated 
terrain.  

Objective 4 – Graphic User Interface 

Sub Objective 4.1 Terrain Controls  
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A successful GUI should allow the user to be able to easily make the previously discussed 
changes to the terrain generation process through a simple and easy to understand UI. 

Sub Objective 4.2 Performance Statistics  
The GUI should show the user the relevant details for performance analysis, such as the 
average frames per second, the number of sections of terrain that have been generated and 
the number that are being rendered. 

Objective 5 – Additional Terrain Details 

Sub Objective 5.1 Vegetation 
The terrain should feature trees and possibly other plant life, grouped together in forests and 
individually in realistic looking positions. This means that trees should only appear where the 
gradient of the ground is suitably level. 

Sub Objective 5.2 Water 
The terrain should feature water in varying sizes, taking the form of lakes and if possible 
oceans. These could be achieved with a simple sea level variable, and if most other 
objectives have been achieved could be extended to include realistic flowing rivers and 
streams although this would likely be more complex to implement. 

Sub Objective 5.3 Atmospheric Details  
The world should include a skybox to help immerse the user in the environment and 
potentially other features such as fog and clouds that could also be generated using fractal 
techniques. 
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3 Background 

The use of fractal landscapes has been rising in popularity in both the CGI film industry 
(Planetside, 2015) and the games industry, with some notable examples including the soon 
to be released “No Man’s Sky” (Parkin, 2015) and the older “Minecraft” (Young, 2015) which 
still maintains thousands of sales a day (Q4, 2015) with has over 21 million units sold on pc 
and mac alone (Mojang, 2015). The use of fractal landscapes in these games allows 
developers to generate infinite worlds or even galaxies; allowing players to explore these 
vast landscapes can clearly lead to a successful product, so as long as the landscape is not 
only huge, but interesting as well.  
 
A fractal is a never ending pattern that is self-similar across different scales (Fractal 
Foundation, n.d.); to put it more simply this means that something is fractal if it has the same 
pattern as a whole as it does when zoomed in. The mathematician Mandelbrot was the first 
to notice that fractal patterns appear a lot in nature (Mandelbrot, 1982), such as in trees, 
rivers, mountains, and coastlines. A fractal landscape is natural looking terrain generated by 
an algorithm that makes use of a random variable to produce a surface that is somewhat 
fractal in nature. 

3.1 Comparison of Technologies 

3.1.1 Graphics APIs 

In order to render the landscape a graphics API was required; the two that are the most 
widely used today are DirectX, a proprietary API created by Microsoft (Microsoft, n.d.), and 
OpenGL, an open source API (Kronos Group, n.d.). The following is a short comparison of 
each of these technologies. 
 
DirectX is closed source and limited to Microsoft platforms (Windows, Xbox), although it is 
possible to enable it to run on other platforms through third party software such as W.I.N.E. 
(WINE HQ, n.d.), however some performance loss can be expected. Traditionally, DirectX is 
the first to implement new technologies, and as such it has been the standard for the games 
industry for many years although OpenGL is increasing in popularity. 
 
OpenGL is an open source, cross platform API available on most platforms including 
windows, Linux, and mac (Kronos Group, n.d.). As it is open source there are a large 
number of tutorials available online, however many of them use deprecated versions of the 
API. At the GDC in 2014 several experts suggested that OpenGL could be up to fifteen times 
faster than DirectX (Walton, 2014), although such drastic performance differences are 
unlikely to be seen in the context of this project. 
 
The version of each should also be considered, for instances using tessellation or geometry 
shaders limits compatibility to systems that support OpenGL version 4 (OpenGL, 2014) or 
DirectX version 11 (Wikipedia, 2016). 

3.1.2 Programming Languages 

The options for programming languages are somewhat restrained by the choice of graphics 
API and the authors familiarity with the languages. Although OpenGL is supported by a wide 
range of languages the author is only comfortable enough using the bindings for C++ or C#.  
 
While C# is a more modern language and is technically easier to use, the greater 
performance speed of C++ and the authors deeper familiarity with using it in conjunction with 
OpenGL mean that it has been decided that C++ will be used for this project. 
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A few libraries will also be used to help with some of the more fundamental OpenGL and 
Maths functions. The SDL2 library is used to make creating a window and OpenGL context 
simple as well as to handle user input (SDL, 2016). The Maths library, GLM, has also been 
chosen as it was specifically creating for use with OpenGL (GLM, 2016). Both libraries work 
natively in C++ which will aid in performance.  

3.1.3 Graphic User Interface 

A user interface will be required to allow the user simple control over the terrain; this will 
mostly be done through the manipulation of variables used during the terrain generation. It 
should also allow the user to swap between multiple cameras giving different controllable 
views of the landscapes. The final necessary feature the UI should enable is to allow the 
user to load and save different terrains as well as generate new ones at the push of a button. 
 

3.1.3.1 Qt Framework 
The Qt frame work is a powerful toolkit for developing easy to use user interfaces in many 
different languages. The toolkits components are written natively in C++ and support 
OpenGL, proving to be a popular tool for a wide variety of games (Qt, 2016). 
 

3.1.3.2 AntTweakBar 
AntTweakBar is a lightweight native C++ library designed to enable programmers to create 
simple intuitive user interfaces. It allows C++ variables to be simply bound to graphical 
controls (AntTweakBar, n.d.); this lends itself naturally to this projects use case, allowing the 
programmer to bind the variables that control the look of the landscape to simple controls. It 
is also completely free to use and redistribute and has examples of integration with a 
number of OpenGL libraries as well as DirectX. 

3.2 Comparison of Algorithms 

3.2.1 Terrain Generation 

There are several existing methods to generate fractal landscapes; a brief summary of some 
of these algorithms is listed below. 
 

3.2.1.1 Height Maps 
Most terrain generation algorithms output a height map of some sort, as such it is necessary 
to define what a height map is. A height map is a two dimensional set of values, representing 
heights. This is often stored as a greyscale image where heights vary from zero (black) to 
255 (white), this range can be easily stretched or compressed or a colour image could be 
used to increase the range. 
 

 
Figure 1 - On the left is a height map, on the right the same height map is rendered. 
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3.2.1.2 Mid-Point Displacement 
One algorithm is mid-point displacement (Bird, Dickerson, George, 2013) in which a line or 
square is split at the mid-point and the height value of that point is displaced by a random 
value with in a set range. This process is repeated each time reducing the range to produce 
finer details until the desired level of detail is found. In figure 1 below you can see a 2D 
example of how this algorithm can quickly create a realistic landscape in just a few iterations. 

 
Figure 2 Mid-Point Displacement in 2D 

3.2.1.3 Diamond Square Algorithm 
The Diamond square algorithm builds on the previous algorithm, but attempts to remove the 
square artifacts that the terrain can exhibit by alternating the mid-point to be calculated 
between diamond and square patterns (Stranger, 2006). It is one of the most popular 
methods currently used. 

 
Figure 3 Diamond Square Algorithm from above 

The calculation of the square midpoint is called the diamond step, and the calculation of the 
side midpoints is called the square step. Starting with a square of (ABCD), seeded with 
height values at the four corners, the first step is to calculate the height at the midpoint (E) 
by averaging the values at each corner (ABCD) and adding a random value based on the 
roughness of the terrain. 
The next step is to calculate the midpoints of the line segments (F, G, H, and I), by 
averaging the corner values and midpoints of adjacent squares then once again adding a 
random value. To do this for the midpoint F, an average would be taken from A, E, and B 
before adding the random value. Then repeat square and diamond steps over and over 
again until a sufficient level of detail is acquired. 
 
Both this method and the previous method have a couple of flaws, one being that real life 
landscapes aren’t infinitely fractal in nature. Erosion and other natural processes cause 
landscapes to lose their self-similarity at the small scales (Bickford, 2012). The second flaw 
is that even if the processes are iterated enough times to provide a very high level of detail 
some artifacts will still be visible on the folds made by each iteration, causing the landscape 
to look more artificial.  
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3.2.1.4 Using Perlin Noise 
One method that attempts to circumvent the flaws of the previous methods is to use a type 
of “noise” created by Ken Perlin, whilst he was working on the movie “Tron” (Perlin, 1999). At 
its core the idea is to think of landscapes as waveforms. With each mountain being made up 
of a large, low frequency wave and consecutively smaller and smaller waves each of which 
have higher and higher frequencies (figure 3). 

 
Figure 4 Graphs showing how a mountain scape can be created from lots of waves 

In order to create a wave of Perlin noise, a list of random numbers must be created and then 
interpolated between using a non-linear interpolation function. It can then be extended into 
two or more dimensions by interpolating over the x-axis, then the y-axis, and so on. 
 
An alternative method is to start with an image of random noise and either zoom in 
repeatedly into the same area or use multiple images and add the result of the zoom of each 
image together to create the height map in the same way as with the generated waves. 
 
Perlin noise is a very popular technique throughout out the gaming and film industries; in 
fact, since its inception in 1983 Perlin noise has become an essential tool for generating 
surfaces, terrain, and natural appearing textures. In two or three dimensions it can be simply 
implemented to create textures and surfaces, and in the four dimensions to quickly animate 
them. Variances on the original algorithm, such as simplex noise (which removes some 
computational complexity), are used in almost every CGI tool to date and games like 
Minecraft (Persson, 2011) rely heavily on it for all their terrain generation.  
 

3.2.1.5 Fast Fourier Transform 
This technique also uses the idea that landscapes and waveforms are very similar in nature. 
It starts by generating a random white noise signal, and then applying a fast Fourier 
transform to the data (Bourke, 1997). This converts the data from the spatial domain, normal 
image space, into the frequency domain, which tells us how much of the signal lies within 
each frequency (ask a mathematician, 2012). This will basically look like slightly different 
white noise. So the next step is to filter the new data based on frequency, a number of 
different filters could be used, but one of the simplest ones is a “pink-noise” filter. In very 
simple terms this will remove a lot of the noise from the dataset, leaving it much smoother 
(LaBoiteaux, 2014). The final step is to transform the data back into the spatial domain using 
an inverse Fourier transform to do so. 
 
The shape and scale of the landscape can be manipulated, by changing values in the filter 
that has been used and by changing the seed values when generating the original data. One 
of the more appealing aspects of this algorithm is that the surfaces that it creates tile 
perfectly, although this would perhaps be more useful when using the technique to create 
textures rather than terrains. 
 

3.2.1.6 Particle Deposition 
This technique is based on how some islands and mountain ranges are actually formed. In 
particular, it focuses on volcanic landscapes that are created by lava flow. 
The basic principle is to drop particles onto an empty height map and simulate how they 
would naturally fall as the pile of particles that gradually increases (Shankel, 2000). An 
example of this technique can be seen in figure 4. 
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Figure 5 - Particle Displacement 

Particles are dropped one at a time on top of each other, with each particle being pushed in 
each direction until it comes to rest. A particle is not at rest unless all of its immediate 
neighbours are equal or higher in altitude to it. 
The dropping point can be varied randomly in both when it is moved and in which direction, 
to create a random landscape. Alternatively, the shape of the landscape can be relatively 
precisely manipulated by controlling how the particle drop point is moved. 
 

3.2.1.7 User Control Over Terrain Generation  
With the exception of the last technique discussed, most of these algorithms, at the most 
basic level, work in a somewhat similar manner. This similarity means that the methods of 
control that the user can have over the terrain generation are also similar. 
 
Perhaps the property that will give the user the most drastic control over the landscapes is 
the seed value for the random number generator. Most of the techniques use a random 
number generator at some point, whether as seed values for the start of the grid in diamond 
squares or to create a source of noise in the Fourier transform technique. Saving the random 
numbers that are produced from the generator, also serves as a method for recreating the 
same landscape multiple times. 
 
Another important value that the user could have control over is the “Roughness” value, this 
controls how steep the changes between points are and would have quite a large effect on 
how the landscapes looked overall. 
 
The number of iterations or size of the grid of data can be changed to increase or decrease 
the density of the mesh providing large amount of detail or very basic meshes with very few 
details. If this number is too low however the landscape would not appear at all realistic, and 
if it is too high then it could cause performance issues. 
 
The sea level of the created world could also be manipulated, while this would not affect the 
actual generated terrain it can change how the landscape is perceived. For example, a high 
sea level would mean only the highest mountains would be visible making it look like a world 
of islands, where as a low sea level would give vast continents and huge mountains. 
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3.2.1.7 Caves and Overhangs 
One issue with a lot of these algorithms is that they have the inherent problem of not being 
able to model overhangs or caves (Bickford, 2012). Fortunately, there are a couple of ways 
around this, the first is to go over the vertex data after it has already been generated, and 
push or pull vertices to create caves and overhangs. The main problem with this issue is that 
it’s very computationally expensive. The second option is that rather than treating the data 
produced as a height map; treat it as a density, where a value higher than or equal to zero 
represents the ground and a value lower than zero is air. To ensure that all the ground still 
starts at ground level and that there aren’t floating pieces of ground, the data should be 
offset by the height. The downside to this technique is that it can produce some unsightly 
and unlikely landscapes. 

3.2.2 Terrain Visualisation 

Once generated the terrain needs to be rendered, below is a discussion of some of the 
methods to do this and various ways to optimise the performance of rendering terrain. 

3.2.2.1 Standard Rendering 
The most basic way of rendering a terrain is to simply assign one vertex per height value in 
the height map and assemble a triangle mesh from them, before sending them to the GPU. 
While simple and very easy to achieve, it is very expensive as a large number of polygons 
will need to be rendered. This would be somewhat acceptable if only a small section of 
terrain needed to be rendered, but as one of the aims of this project is to render an infinite 
amount of terrain it is unsuitable for this project. 
 
However, some of the performance issues can be resolved by using LOD algorithms to 
dynamically change how many vertices are assigned to each height value reducing the load 
on the system for sections of terrain that require less detail. This could be achieved on the 
CPU or GPU and several algorithms to do this are discussed later. 
 
Culling can also help to reduce the number of vertices that are passed to the GPU and 
reduce the load on the graphics card. There are two different types of culling, frustum and 
occlusion culling. 
 
Frustum culling is where before the blocks of terrain are passed to the GPU, a calculation is 
done to determine whether the block is actually visible (inside the view frustum). If the block 
is not inside the view frustum then it is not passed to the GPU to be rendered, saving a large 
number of unnecessary draw calls (Lighthouse, 2015). 
 

 
Figure 6 - Grey blocks of terrain are outside of frustum, so not rendered 
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3.2.2.2 Ray Casting 
Ray Casting is a technique that replaces traditional rasterization and the z-buffer, by casting 
a ray for each pixel of the display in a straight line and checking for a collision at regular 
intervals, called steps, with a point of the terrain thus determining what colour each pixel 
should be (Abi-Chahla, 2009). A maximum distance is also set so that the ray does not carry 
on infinitely if no collision is found.  
 

 
Figure 7 - A ray being fired through a terrain 

 
The performance of this technique is dependent on the size of each interval, a larger size will 
be less computationally expensive but also less accurate so a balance must between 
accuracy and performance must be found.  

3.2.3 Level of Detail Algorithms 

Level of detail or LOD as it commonly known is an essential component for rendering 
landscapes in real time. The principle of it is to render the terrain that is further away in less 
detail than the terrain that is closer to the camera, therefore reducing the amount of work 
that the GPU has to do and improving performance. 
As in real life people cannot see large quantities of detail on distant mountains, just the 
overall shape so it should be possible to implement level of detail without the user being 
aware of any change (Figure 4). It should be pointed out that level of detail is not just 
restricted to terrains, but used throughout all 3D graphics to reduce the overall workload 
(David Luebke, 2003). 

 
Figure 8 - Showing how the user cannot perceive the difference in a model made up of fewer triangles 

when it is far away (David Luebke, 2003) 
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3.2.3.1 ROAM Algorithm 
ROAM stands for Real-time Optimally Adaptive Mesh, is one of the oldest and most common 
methods for applying LOD to terrain meshes. The algorithm uses two queues, sorted by 
priority. The first queue is called the “Drive Split Queue”, this stores a list of triangle splits 
making it simple to increase the LOD of the terrain by just repeatedly splitting the top triangle 
in the queue. The second queue is called the “Drive Merge Queue”, storing a list of triangle 
merge operations, so to decrease the level of detail of the terrain repeatedly execute the top 
operation in the queue (Mark Duchaineau, n.d.). The split-merge technique can be seen 
below in figure 6. 

 
Figure 9 - Shows the split-merge technique for ROAM on a terrain map (David Luebke, 2003) 

This algorithm works excellently from a purely visual perspective, however as it originates 
from before any major advances in shading technologies it is entirely CPU based meaning 
that unfortunately it can’t keep up, in terms of performance, with more modern techniques 
that make use of shaders. 
 

3.2.3.2 Chunked LOD 
Chunked LOD uses a quad-tree structure (Ulrich, 2000), to sub-divide a tile of terrain into 
consecutively smaller tiles based on the proximity of the player and a set parameter called 
the LOD threshold. Each sub-divided tile is made up of the same number of vertices but 
represents a half the area in world space for each sub-divide, this means that the detail will 
increase the closer the player gets to the terrain. Figure 7 shows the sub-divides closer to 
the player. 

 
Figure 10 - Chunked LOD, each colour represents a sub-divide. 

This technique should perform better than ROAM; however, it is possible that some terrain 
“popping” would occur as sub-divides are made. 
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3.2.3.3 Geometry Clip Maps 
Using the geometry clip map technique the terrain is dynamically divided up into groups of 
different levels of detail depending on the distance from the camera, producing a concentric 
grid of different levels of detail that move with the camera. This eliminates the “pop” effect 
often seen in discrete level of detail algorithms like Chunked LOD (Pharr, 2005). 

 
Figure 11 - Terrain Rendering Using Clip Map (nVidia, 2005) 

 

3.2.3.4 Geometry Mip Maps 
In this technique, the terrain is divided into patches of uniform size, and different levels of 
detail are generated depending on the distance the patch is from the camera. A low detail 
patch consisting of less vertices will be shown when the block is far away from the camera, 
and a patch consisting of more vertices will be swapped in as the block gets closer. This 
technique is simple to implement; however noticeable popping would be noticeable as 
blocks are swapped for ones of different detail. 
 

3.2.3.5 Hardware Tessellation 
A more recent innovation in level of detail techniques is using hardware tessellation is to use 
tessellation shaders that have been implemented in OpenGL 4 and DirectX 11 (Real-Time 
Rendering, 2008). They dynamically change the level of detail based on passed in 
tessellation parameters (Aviel, n.d.). 
 
In OpenGL 4 the tessellation stage adds two new programmable shaders and a fixed 
function generator between them. The tessellation control shader takes the input of a simple 
patch of vertices and calculates how many times the patch should be sub-divided, this is 
defined by the “Inner Tessellation” level and the “Outer Tessellation” level as shown in figure 
12. The fixed step of the tessellation stage then divides the patch up the appropriate amount 
of times and outputs a new set of vertices. 
 

 
Figure 12 - How Tessellation Levels Work 
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The second programmable shader is the tessellation evaluation shader, it’s job is to assign 
each vertex a position in world space and in the case of rendering terrain displace the height 
of the vertex using values from the generated height map. 
 
The only real drawback to this implementation is that as it is relatively new it doesn’t have as 
wide range of hardware support as the methods that were discussed earlier, despite this 
drawback tessellation is the chosen level of detail implementation for this project. 

4 Technical Development 

4.1 System Design 

4.1.1 Technology 

Following analysis from the research presented in the background chapter it was decided 
that this project should use the combination of C++ and OpenGL due to both their 
performance benefits and the authors previous experience developing with them. The SDL 
library has also been used to make window and context creation easier, as well as to handle 
user input. GLM was also chosen as a comprehensive math’s library that has been 
specifically designed for OpenGL. 
 
It has also been decided to use tessellation as the preferred level of detail method, as such 
the application will only run properly on systems that support OpenGL version four or higher. 
Fortunately, the target system meets this requirement. 
 
The chosen algorithm for generating the terrain is the diamond-square method, this will 
generate the terrain on the CPU, so the application is multi-threaded in order to maintain 
acceptable performance. 

4.1.2 Architecture 

As this project is a real-time simulation it was logical to create a game framework to handle 
the constant update and render calls. 

 
Figure 13 - Class Diagram of Completed System 
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Figure 13 shows a class diagram of the game framework as well as the classes created to 
handle the generation and rendering of the terrain, in order to avoid an overly complex 
diagram many methods and variables have been omitted. 
 
Game Class – The game class provides a template for My Game. It holds a camera object, 
window object and an fps counter used to monitor performance. The OnLoad, OnUpdate, 
OnRender, OnUnload, and OnKeyPress methods are simple stubs designed to be 
overridden by the My Game class in a similar way to how game frameworks like XNA work. 
The Game class also holds the main game loop, which runs the OnUpdate, OnRender, and 
OnKeyPress methods repeatedly. 
Window Class – The window class uses the SDL library to create a window and OpenGL 
context of a specified size. It also handles some graphics options like vSync and double 
buffering. 
Camera Class – The camera class handles the creation of view and projection matrices, as 
well as helper methods to alter the camera’s positon, pitch, and yaw. 
Fps Counter Class – The fps counter records the time it takes for each frame to complete 
and outputs an average over a defined number of frames. 
My Game Class – This class overloads the Game class, processing key inputs to move the 
camera, and calling the update and render methods for the Terrain Manager and UI objects 
that it holds. 
UI Class – The UI class uses the AntTweakBar library to create a simple user interface to 
edit variable contained within the My Game and Terrain Manager classes. 
Image Utility Class – This static utility class holds methods to generate 1D and 2D textures 
from image files using the SDL Image library, as well as the method to generate a 2D texture 
out of terrain height and normal information. 
Terrain Manager Class – The terrain manager class handles the generation, rendering, and 
management of the terrain blocks. It generates the initial terrain blocks then creates new 
blocks, on the generation thread, as the user moves around the world, ensuring that they are 
properly stitched together with existing blocks. It also handles removing blocks that go out of 
render distance. The class also stores the necessary information to recreate the block of 
terrain if the user returns to it and methods for extracting data such as the height value from 
a block at the current camera position. It also controls the GLSL Program that is applied to 
the terrain, as wells as the creation of the vertex array and buffer objects. 
Block – The block class is where the diamond square algorithm is implemented. Vertex 
data, such as the surface normal vectors, are also calculated in here from the generated 
height map before being loaded into a texture using the Image Utility class and rendered in 
the terrain manager class. 
GLSL Program Class – The GLSL program class handles everything shader related. It is 
capable of compiling and linking every stage of the modern OpenGL pipeline, from passed in 
shader files. It also contains large amounts of error handling to output GLSL compiler errors, 
which is very useful for debugging shaders that were mostly written in a text editor without 
any syntax checking. There are also several helper methods to set uniform values in the 
shaders reducing the amount and complexity of code needed in the rest of the application. 
Shaders – The vertex shader is incredibly simple, it’s only function is to offset the initial 
vertices with values from the height map before passing them onto the tessellation control 
shader. The tessellation control shader determines the tessellation levels using the level of 
details algorithm that will be described in greater detail below. After the tessellation levels 
have been applied the evaluation shader sets the normal values and displaces the new 
vertices with information from the height map, before passing them to the fragment shader 
where colour, lighting, and fog are applied. 
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4.2 UI Design 
A decision was made to use “AntTweakBar” for the user interface; this was mainly due to its 
lightweight nature and the fact that it was designed for almost the exact same use case as 
this project, to tweak variables in the terrain algorithms. AntTweakBar is built natively for 
C++ and is very easy to interface with, binding variables from My Game and Terrain 
Manager to UI components that enable the user to very simply tweak them and see the 
effect of doing so in real time. 

 
Figure 14 - The completed user interface 

The user interface appears in the top right of the screen, although it can be hidden or moved 
so that it does not obscure any part of the terrain. It is controlled using the mouse, by using 
clicking on the plus or minus buttons or by manually enter values. The user interface is 
divided up in to four sections, the first of which gives the user performance statistics and the 
ability to adjust some render and graphics settings. The user can choose to render the 
terrain as a wire frame or adjust the level of detail factor to control the tessellation levels. 
The second section gives the user the means to change all of the lighting variables and 
adjust the linear fog thresholds. The third section allows the user to switch camera mode 
between; flying, free cam, and top down view, as well as displaying the cameras position. 
The final section gives the user control over how the terrain is generated, they can change 
the seed value from which all blocks are based or adjust the roughness value used in the 
diamond-square algorithm, and apply smoothing to the generated height map. They can also 
choose to generate an entirely new terrain or adjust the number of blocks that surround the 
user at any one time. 

4.3 System Implementation 
This section of the report discusses how several major parts of this project were 
implemented, and the various problems and solutions associated with each of them. It is 
ordered chronologically. 
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4.3.1 Terrain Generation – The Diamond Square Algorithm 

The diamond square algorithm was chosen to be used for terrain generation in this project, 
as a balance between complexity and realism. The implementation of the diamond square 
algorithm was almost identical to how it was presented early in the background section, 
using a recursive function to progressively subdivide a square setting the height of each 
point to the average of four previously generated points, depending on whether it is the 
diamond or square step, plus a random offset value that decreases in size each iteration 
(roughness value) to produce the finer details. Figure 15 shows this projects implementation 
of diamond-square building a detailed terrain. 

 
Figure 15 - Implementation of diamond-square algorithm 

The user has control over the size of the generated height map, the seed used for the 
random number generator, as well as over the roughness value, between 0 and 1, which 
determines how mountainous or flat the generated terrain will be. 

 
Figure 16 - Difference between roughness value of 0.25 (left) and 0.7 (right) for the same seed value 

The algorithm outputs a two dimensional array of height values that can be used as a height 
map. In order to initially view the terrain, a simple mesh was created by creating a two 
dimensional array of vertices covering 0-128 across the x and z axis. The y value of these 
vertices was then set to the corresponding value in the generated height map, before 
generating a list of indices to create the correct triangle strip layout to draw. 
 
As you can see from figure 16, the terrain the algorithm creates is suitably mountainous and 
a wide variety of different looking terrain blocks can be generated by altering the seed and 
roughness values. This implementation still has some flaws, such as the noticeable sharp 
peaks that are visible even at lower roughness values. An improvement on this 
implementation is discussed later in this section. 

4.3.2 Texturing 

In order for the terrain to look realistic it must to be coloured appropriately. An initial attempt 
to do this was done by hardcoding defined colour values for several height ranges in the 
vertex shader. And although this was an improvement on no variation in colour it leaves a lot 
to be desired (far left of figure 17). 
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Figure 17 - Colour Progression and 1D Texture (Far Right) 

The first attempt to improve this was to use a one dimensional texture as gradient rather 
than manually defining the colour for each range. A one dimensional texture is simply a 
texture that is one pixel wide, an example of the one used can be seen on the far right of 
figure 17 (it has been widened for visibility). Once loaded, using the SDL Image library, and 
passed into the shaders the fragment shader then assigns a colour value by sampling the 
1D texture using the fragment height divided by the total height range for the block as the 
texture coordinate. The effect of this can be seen in on the centre block in figure 17. This is 
still not ideal and a final improvement was attempted by adding a pseudo random offset to 
the colour of each fragment irrespective of its height, this gives some additional variation 
across fragments allowing smaller details in the terrain to be more easily identified (figure 17 
block on the right). 
 
The final solution to texturing the terrain was deemed acceptable when combined with per 
fragment lighting. However more realistic and complex techniques could have been applied 
given more time, such as using multiple photo-realistic textures and blending them together 
across the terrain based on the height and gradient of the terrain. 

4.3.3 Calculating Normals and Lighting 

In order to properly light the terrain, the terrains normal vectors must be calculated. As the 
terrain is being generated on the CPU, it makes sense to generate the normals immediately 
after the height map has been generated. 
 
There are a number of popular methods for generating normal vectors from a height map, 
the one implement in this project is as follows. Calculate the normal for each triangle in the 
map, using the cross-product of the triangles edges and add the normal to each point of the 
triangle. Once this has been done for every triangle the normal at each vertex is normalised. 

 
Figure 18 - Calculating Normals 

To illustrate this further, if you wanted to calculate the normal of the vertex A in figure 18, 
you must first calculate the normals of every triangle that it is a part of (the coloured ones). 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑜𝑓 𝐴𝐵𝐶 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒(𝑐𝑟𝑜𝑠𝑠𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐴 − 𝐵, 𝐶 − 𝐵)) 

Then each normal is added to the normal vertex of A, before it is normalised giving you the 
final normal vector. 
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Once all the normal vertices have been calculated they can be passed along to the shaders, 
initial this was done using vertex attributes and a vertex array object, but later the normal 
and height value were stored in a two dimensional texture for the shader to sample. 
 

 
Figure 19 - Phong lighting applied to final terrain block 

Once in the shader, the only lighting deemed necessary for rendering terrain was per-
fragment Phong shading from directional source to simulate sun light (LightHouse, 2015). 
This was done in the standard manner, and as such will not be discussed any further from 
here. 

4.3.4 Improving the Terrain Generation 

At this point it was decided to try and improve the terrain generation algorithm. The steep 
peaks were the main issue that detracted from the realism of the terrain, unfortunately these 
are an artifact from the diamond-square algorithm itself and it would be overly complex to 
adapt the algorithm so that these were not generated. Instead it was decided to apply an 
optional smoothing filter to the generated height map, giving the user more control over the 
terrain generation. 
 
A simple band smoothing filter was chosen (LightHouse, 2015), to be applied to the entire 
height map. The smoothing filter is applied to each vertex, and a new height is calculated 
based on the height of its immediate neighbours using the following equation. 
 

ℎ𝑒𝑖𝑔ℎ𝑡[𝑥, 𝑧] = ℎ𝑒𝑖𝑔ℎ𝑡[𝑥 − 1, 𝑧] ∗ (1 − 𝑘) + ℎ𝑒𝑖𝑔ℎ𝑡[𝑥, 𝑧] ∗ 𝑘 
Where k is the smoothness constant between zero, completely flat terrain, and one, 
unchanged terrain. 
 
In order for the smoothing filter to have optimum effect it must be applied in both directions 
for every row and column. 
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Figure 20 - A smoothing filter of 0.95 being applied for up to 5 iterations 

Further control can be had over how smooth the terrain is by apply the filter several times, as 
can be seen in Figure 20. The drawback to this method is that it adds a lot of computation 
time to the terrain generation, depending on how many times the filter is applied, so a 
balance must be struck between performance and aesthetics. 

4.3.5 Level of Detail - Tessellation 

The general principle of tessellation has been explained earlier in the background section. 
As such this section will focus on the specific implementation of the level of detail algorithm 
and its limitations. 
 
As the tessellation shaders will be sub-dividing patches, a patch must first be given created 
and drawn. In the terrain manager, a simple grid of nine vertices is defined in a vertex array 
object giving four squares that are 32 by 32 units in size. As the maximum tessellation factor 
can divide a terrain up to 64 times, the highest possible level of detail matches the 
dimensions of the height map for each block (128x128). 
 
This also means that the height, and normal values must be passed to the shader in a new 
way. So instead of passing in the information as vertex attributes the height and normal are 
combined into a two dimensional texture where the first three values represent the normal 
and the fourth or alpha value represents the height. 
 
The tessellation levels are calculated in the tessellation control shader. The level of detail 
calculation is made by determining the length of each of the squares edges in screen space 
and dividing by a user controlled factor (Wolff, 2011). 

𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑑𝑒𝑡𝑎𝑖𝑙 =  𝑐𝑙𝑎𝑚𝑝(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣0, 𝑣1)/𝑙𝑜𝑑_𝑓𝑎𝑐𝑡𝑜𝑟, 1, 64) 
 
The length of the edge in screen space is determined by first multiplying each vertex by the 
model view projection matrix and then preforming the following calculation. 

𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑠𝑐𝑟𝑒𝑒𝑛 𝑠𝑝𝑎𝑐𝑒 = (𝑐𝑙𝑎𝑚𝑝(𝑣𝑒𝑟𝑡𝑒𝑥. 𝑥𝑦, −1.3, 1.3) + 1) ∗  (𝑠𝑐𝑟𝑒𝑒𝑛_𝑠𝑖𝑧𝑒 ∗ 0.5) 
Where “screen_size” is a two dimensional vector containing the size of the screen in pixels. 
 
Prior to this calculation the control shader determines if the patch is on screen, by testing 
each vertex against the view frustum, if the patch is not on screen then the tessellation levels 
are simply set to zero. 
 
For quads there are six different tessellation levels that need to be set (Bush, 2015), one 
outer level for each edge and two inner values. The outer levels are set tl the level of detail 
calculation for the corresponding edge, and the inner levels are set to an average of the 
outer levels. 
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Figure 21 - Level of detail applied to four patches 

Once all of the tessellation levels have been set, the fixed function “Tessellation Primitive 
Generator” creates the new points which are passed to the Tessellation Evaluation shader. 
The passed points are in a domain space, relative to their patch, so before anything useful 
can be done with them they must first be translated into normal space. Once in normal 
space the vertex height and normal can be extracted from the height and normal texture, 
before being passed onto the fragment shader for texturing and lighting. 
 
While this approach looks good the majority of the time, one issue that has become apparent 
is that when the camera is perpendicular to the edge of a patch, some strange artifacting 
occurs. This could potentially be resolved, by creating a circle around the edge and testing 
its screen space radius to give a more accurate level of detail (Cantlay, 2011). 

 
Figure 22 - Show artifacting when perpendicular to edge 
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4.3.6 Infinite Terrain 

To create infinite terrain, the first obstacle that must be overcome is to draw multiple blocks 
of terrain. To do this each block is given an x, z position, which when added to the global 
seed in the terrain manager is also used for the blocks seed to generate its own height and 
normal map texture. 
 
The terrain manager stores a list of all the generated blocks and in it’s on render method it 
loops through them, setting the shaders model matrix to be a translation matrix created from 
the blocks x, z position and also setting the shaders sample2D to be the shaders height and 
normal map texture. The result of this can be seen in figure 23. 

 
Figure 23 - Multiple blocks rendered, cracks showing where edges don't meet 

It is immediately apparent that the terrain looks wrong, the edges of the terrain do no match. 
In order to resolve this, the blocks of terrain must be generated in a specific order. The first 
block to be generated must be the centre block, where the camera starts. Once this block 
has been generated each block that shares an edge with it can then be created, but before 
the diamond-square algorithm can generate its height map, each edge of the height map 
that adjoins the centre block must be set to the values of the corresponding edge of the 
centre block. Once that is done the rest of the blocks data can be generated and then the 
process can be repeated for the corner blocks. 

 
Figure 24 - Multiple blocks with matching edges 
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The next step to achieve infinite terrain is to generate blocks as the camera moves around 
the world. This is done by recording the cameras initial position as the last location that 
terrain was generated, then once the camera has moved more than half a block from that 
location the terrain manager will attempt to add all of the blocks that should be surrounding 
the current block. If the block it is trying to add already exist it is skipped and if not, then its 
edges are matched to existing blocks and its height map can be generated. The last step is 
to set the last location terrain was generated to the cameras new position, so that when the 
camera moves far enough again more terrain can be generated. 
 
The terrain manager also checks when a block is more than the user defined block depth 
away from the camera, if it is the block is removed so that the application does not run out of 
memory. In order to maintain performance, the terrain generation is also done on a separate 
thread to the rest of the application logic and rendering code, if this was not the case then 
the user would be unable to do anything every time they were waiting for terrain to be 
generated. 
 
The terrain generation thread is spawned when a new terrain manager is created, it runs 
continuously until the application is exited. It monitors the last position that terrain was 
generated and adds the new blocks when the camera has moved far enough. It also uses a 
mutex to lock the various lists it accesses so that no errors are caused by adding and 
removing terrain blocks. This implementation ensures that the performance of the application 
suffers little impact when generating terrain, so can still be considered real-time. 
 
In order to ensure that when the user returns to a block that has been previously generated 
but then deleted, some information about each generated block must be stored for the 
duration of the time the application is running. This is necessary because although the seed 
value can be recreated from the blocks x, z position there is no guarantee that the adjacent 
blocks that were used to set the edge values still exist. As such for every block of terrain that 
has been previously generated, each of its edge values must be saved along with its x, z 
position that is used as a key to identify which block the edges belong to. Then when 
recreating the block, a check is performed to see if it has been previously generated and if 
so its edges are set to the ones that have been stored for it. 
 
There were two main issues discovered when generating multiple blocks of terrain, the first 
of which was that the normals at the edge of each block were not smoothed with its 
neighbours this creates distinct black lines along some edges. 
 

 
Figure 25 - Black line from incorrect normal where blocks meet. 

In order to solve this issue, it would be necessary to recalculate the normal for the edge 
vertices incorporating the triangles that each edge vertex is a part of in the adjacent block. 
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As this would require significant reworking of the code and normal generation algorithm, this 
solution has yet to be implement. 
 
The second issue, is that when the smoothing function was applied to the terrain it would 
alter the height values at the edges of the blocks causing the reappearance of cracks in the 
terrain. This was resolved by re-writing the smoothing function so that it did not adjust the 
height values at the edges of the height map. 

 
Figure 26 - Left hand showing cracks caused by smoothing, right hand side showing that the bug is fixed 

4.3.7 Fog 

In order to disguise the blocks of terrain appearing and disappearing as they are loaded in 
and deleted, it was decided to implement some fog so that it appeared the terrain was 
continuous. A simple linear fog was implemented (MbSoftworks, 2015) using the following 
equation. 

𝑓𝑜𝑔𝐹𝑎𝑐𝑡𝑜𝑟 =  𝑐𝑙𝑎𝑚𝑝(
(𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

(𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −  𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
, 0, 1) 

Where distance is the distance from the camera to the point on the terrain, and max and min 
distance are user defined parameters. The fog factor is then used to mix the sky colour with 
terrain colour, meaning that the fragments further away tend towards the colour of the sky 
giving the appearance of fog. 
 

 
Figure 27 - Terrain with (Left) and without (Right) fog 

Figure 27 illustrates the effect of the fog, on the left hand side the fog means that landscape 
smoothly blends into the sky, whereas on the right there is a jarring line where the terrain 
ends. 

4.3.8 Flying Camera 

Due to time constraints and poor planning no plane model was loaded, however a flying 
camera mode was added. This camera mode travels in the direction the camera is facing at 
a constant speed, while maintaining a defined distance off the ground. In order to achieve 
this a method of getting the height of the terrain in the position of the camera was added. 
This is done by taking the camera position, dividing it by the size of the block, and then 
multiplying the integer component of that by the block size to get the coordinate for the 
bottom left hand corner of the block. From this the blocks height map can be found, and 
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using the floating point component of the earlier division the coordinates in block space can 
be calculated and the height extracted from the height map. 
 
Once the height is calculated, the y position of the camera is simple offset by the height plus 
the defined amount. This technique for getting the height could also be used to implement 
terrain collisions, by extracting the normal and height from the height map although this has 
not been implemented in the current version of the project. 
 
Two other camera modes are available; a free cam to move uninhibited around the terrain, 
and a top down camera used to test and demonstrate infinite block generation. 

4.4 System Testing 

4.4.1 Testing During Development 

A large section of the project was created in GLSL. GLSL does not support any debugging 
beyond compiler errors, fortunately the GLSLProgram class that was created outputs these 
compilation errors along with other information in a user friendly manner allowing for quick 
bug fixing during the creation of the shaders. 

 
Figure 28 - Output of shader compilation error 

The rest of the project developed in C++ using visual studio. Visual studio provides a lot of 
help for debugging and testing, however attempts were made to stick to strict coding 
practices to ensure that bugs were easy to identify and fix. 

4.4.2 Performance and Stability Testing 

To test both the performance and the stability of the application, the finished software was 
left to run in flying mode on multiple systems that met the minimum OpenGL requirements. 
The performance was evaluated by recording the average frames per second across this 
time. A table of the recorded values is below. 
 

Test System 
Average Frames per Second 

With vSync Without vSync 

Test System A 60 317 

Test System B 60 352 

Test System C 60 228 
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5 Evaluation 

In this section the finished project shall be reviewed to assess its success, failures and 
potential for further development. 

5.1 Project Achievement 
To assess whether or not the project can be deemed a success, it will be compared to the 
original goals laid out in the aims and objectives section earlier in the report. 

Objective 1 – Generate 3D Terrain in Real-Time 
It was stated that to complete this objective the generated terrain must be realistic, run in 
real-time, textured using shaders, and be infinite. 
This objective was an almost complete success, the application generates terrain in real-
time running at over 60 fps on the test systems, more than enough to be considered real-
time. The terrain is textured appropriately using a 1D texture in the fragment shader. The 
only limitation on the size of the terrain is the maximum value of the floating points used for 
defining where the blocks of terrain are placed, so the terrain can be considered infinite. 
The only negative in this section is that although the overall shape of the terrain and its level 
of detail can be considered realistic, the fractal algorithm at the applications core could use 
some improvements to make the terrain even more realistic. The issues with the normals at 
the joins between terrain chucks spoil the landscape, and more realistic textures could be 
used and blended based on both height and the gradient of the landscapes. Techniques 
could also be used to simulate erosion to produce more natural looking valleys.  

Objective 2 – Simple Simulation of Flying Plane  
As no model of a plane was loaded due to time constraints and poor time management, this 
objective cannot be considered a success. However, the logic for the flying camera is in 
place and functional and all that would need to be implemented is the actual loading and 
rendering of the plane model for this objective to be completed, so it cannot be considered a 
complete failure. 

Objective 3 – User Control of Terrain 
All parts of this objective were completed, the user has control 
over a number of variables to affect how the terrain is generated 
and can generate an entirely new terrain based on any seed 
they like at the click of a button. 

Objective 4 – Graphic User Interface 
This object was to be considered met if the user interface 
allowed the user to control the terrain, as well as see 
performance statistics. As can be seen in figure 29, these 
conditions have been met. The user can control multiple terrain 
generation parameters as well as lighting and camera values. 
The user interface also outputs the average frames per second, 
which meets the requirement for performance statistics. 

Objective 5 – Additional Terrain Details  
This objective can only be considered a partial success, due to 
the lack of the creation of any water or vegetation. However, 
some atmospheric details were added in the form of linear fog, used to help obscure the 
popping effect of additional terrain blocks being loaded. The additional details were omitted 
from this project, as there was not enough time to implement them and they were 
determined to be secondary objectives to the generation of fractal terrain. 

Overall 
As the majority of the primary objectives of this project have been met, this project is 
considered to be successful. However, it was hoped that more of the secondary aims could 
have been completed but due to time limitations that were mostly the result of poor time 
management some aspects were left unfinished. 

Figure 29 - UI 
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5.2 Further Development 

5.2.1 Texturing 

Although the current texturing is acceptable, further work could be done to improve the 
appearance of the terrain. For instance, using multiple textures such as; a grass, rock, snow, 
and sand texture and blending them together using alpha blending based on not just the 
height of the terrain but also how steep or gentle the incline. This would mean that it did not 
appear as if grass grew or snow settled on steep cliffs as it currently does, but instead the 
slopes would be rocky while the plains would be grassy lending a more realistic appearance 
to the generated world. 

5.2.2 Biomes and Vegetation 

Biomes could be implemented, so that terrain blocks that are near each other are grouped 
sharing similar properties, such as the roughness constant and perhaps a set of biome 
dependent textures. This could create the appearance of smooth desert regions using sand 
textures and a low roughness value, and mountainous regions could be created using a high 
roughness value and rocky textures. 
 
This could be expanded further by adding biome dependant vegetation, so that trees grow in 
low grassy areas, while the desert is sparsely populated by cacti. 

5.2.3 Level of Detail 

The implemented level of detail algorithm functions well. However as was discussed in early 
sections the current algorithm suffers from some bugs, these should be resolved using the 
techniques discussed in order to reducing artifacting across the terrain. In addition to this the 
current technique uses blocks of uniform size, performance could be increased by using a 
quad tree or similar structure to allow for blocks of non-uniform size to be created. As in the 
current implementation, a block that is very far away from the camera may only be being 
tessellated a tiny amount, allowing blocks that are further away to cover a larger area while 
being made up of less vertices would resolve this issue. 

5.2.4 Water 

Realistic water should be added, this should be done at the most basic level by adding a flat 
plane at sea level and the apply a custom water shader to it, to simulate the ocean. More 
complexity could be added by using erosion algorithms to simulate how the landscape has 
been errored by water over millennia and add rives along the paths defined by the created 
valleys. 

5.2.5 Rendering Optimisations 

Although the application has performed well across all three test systems, no block level 
frustum or occlusion culling is done, although patch level frustum culling is done in the 
tessellation control shader. Both of these techniques should be implemented to prevent 
unnecessary draw calls and improve overall performance. 
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6 Conclusion 

This project started with the aim to create an infinite fractal world, generating terrain in real-
time and allowing the user to fly through and experience that world, as well as giving them 
some control over how that world is generated. Based on the evaluation the project has 
certainly achieved that goal. With better time and project management more of the aims and 
objectives could have been achieved. However, the project also produced a reusable C++ 
and OpenGL game framework, and helped the author to gain a deeper understanding of 
C++, modern OpenGL shading techniques, such as tessellation, and the mathematics 
associated with games and 3D rendering.  
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Appendix A: Original Task List 

# Task Name Description 
Duration 

(days) 

1 Initial Research Research technologies, algorithms and context of the project 21 

2 Initial Report Write the initial report deliverable 14 

3 Render Simple Mesh Initial experimentation with graphics API’s to render a simple mesh 7 

4 Research fractal 
algorithms 

Research and experimentation with the different fractal algorithms for generating terrain. 14 

5 Implement Infinite 
Scrolling World 

Using the chosen algorithm, implement it so that the generated world seems infinite. 14 

6 Optimization Improve the implementation of the generation process and apply optimizations such as frustum culling 
around the user. 

7 

7 Load & Render 
Plane 

Find a model of a plane, load into the program and render it. 7 

8 Plane Controls Enable the user to control the altitude and direction of the plane. 7 

9 Implement UI Design and implement a basic user interface. 7 

10 Edit Terrain Settings Enable the user to edit basic terrain settings through the user interface. 7 

11 Performance 
Statistics 

Output performance statistics to the user interface. 7 

12 Interim Report Write the interim report deliverable 21 

13 Research Water Research and experiment with different methods of rendering water. 14 

14 Implement Lakes & 
Oceans 

Using to chosen method, add randomly generated lakes and oceans to the world. 14 

15 Research Foliage Research and experiment with different ways of generating trees and other foliage. 14 

16 Implement Foliage Using the chosen methods add foliage to the world. 14 

17 Continuous Testing Testing the software throughout the development phase. 140 

18 Final Testing Testing the software to ensure stability and that it meets the set aims and objectives. 21 

18 Final Report Write the final report deliverable 42 
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Appendix B: Original Time Plan 

  University Calendar Weeks 

# Task Name 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 Initial Research                                  

2 Initial report    D                              

3 Render Simple 
Mesh 

                                 

4 Research fractal 
algorithms 

                                 

5 Implement 
Infinite Scrolling 
World 

                                 

6 Optimization                                  

7 Load & Render 
Plane 

                                 

8 Plane Controls                                  

9 Implement UI                                  

10 Edit Terrain 
Settings 

                                 

11 Performance 
Statistics 

                                 

12 Interim Report                D                  

13 Research Water                                  

14 Implement 
Lakes & 
Oceans 

                                 

15 Research 
Foliage 

                                 

16 Implement 
Foliage 

                                 

17 Continuous 
Testing 

                                 

18 Final Testing                                  

19 Final Report                                 D 

  



 

33 
 

Appendix C: Interim Time Plan 

  University Calendar Weeks 

# Task Name 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 Initial Research                                  

2 Initial report    D                              

3 Render Simple 
Mesh 

                                 

4 Research fractal 
algorithms 

                                 

12 Interim Report                D                  

5 Implement 
Infinite Scrolling 
World 

                                 

 Interim Demo                   D               

6 Optimization                                  

7 Load & Render 
Plane 

                                 

8 Plane Controls                                  

9 Implement UI                                  

10 Edit Terrain 
Settings 

                                 

11 Performance 
Statistics 

                                 

13 Research Water                                  

14 Implement 
Lakes & 
Oceans 

                                 

15 Research 
Foliage 

                                 

16 Implement 
Foliage 

                                 

17 Continuous 
Testing 

                                 

18 Final Testing                                  

19 Final Report                                 D 
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Appendix D: Final Time Plan 

  University Calendar Weeks 

# Task Name 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 Initial Research                                  

2 Initial report    D                              

3 Render Simple 
Mesh 

                                 

4 Research fractal 
algorithms 

                                 

12 Interim Report                D                  

5 Edit Terrain 
Settings 

                                 

 Interim Demo                   D               

8 Plane Controls                                  

9 Implement UI                                  

10 Implement 
Infinite Scrolling 
World 

                                 

11 Performance 
Statistics 

                                 

6 Optimization                                  

17 Continuous 
Testing 

                                 

18 Final Testing                                  

19 Final Report                                 D 
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Appendix E: Risk Analysis 

Risk Severity 
(L/M/H) 

Likelihood 
(L/M/H) 

Significance 
(Sev. x Like.) 

How to Avoid How to Recover 

Hard Drive 
Failure 

H M HM Keep Backups Reinstate from backups 

Data Loss H L LH Use SVN Restore from SVN 

Running out 
of Time 

H L HL Maintain a detailed time 
plan, prioritizing the 
most important features 

Adjust the time play and focus on the 
major features, cutting any 
unnecessary features. 

Chosen 
Technologies / 
Libraries Not 
working well 
together 

H L HL Early prototyping with 
technologies / libraries 
to ensure compatibility 
and identify alternatives 

Use alternatives instead. 

Lack of 
Experience 

M L ML Do lots of research early 
on and try to use 
technologies that the 
developer is familiar 
with 

Switch to technologies that the 
developer is more familiar with 
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Appendix F: Test System Specifications 

 

 System A System B System C 

CPU i7-5820k i5 Phenom x4 – 955 

GPU 980ti 780 GTX-670 

RAM 16GB 8GB 8GB 

Operating System Windows 10 Windows 10 Windows 7 
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